

NYSERDA/DOE Energy Storage Initiative Data Management and Analysis

Jeff Lamoree, EnerNex

Acknowledgements

- The Data Acquisition and Analysis for these demonstration projects is provided by the U.S. Department of Energy.
 - Project Manager Georgianne Peek, Sandia National Laboratories

Project Statement

- Core Requirements PON 846
 - The proposed Energy Storage System (ESS) must include a Data Acquisition System (DAS) for the purpose of providing system operating data to be used for evaluation and generation of reports on the overall performance of the EES.

Approach

- Transport to monitoring center via secure communications link over Internet
- Convert data from vendor systems into standard formats
 - IEEE 1159.3 PQDIF
 - IEC 61850 data models for metering
- Expose via dynamically generated tables, graphs on demand on project web site
- Provide project information, archived data and real-time data on open project web site
 - www.storagemonitoring.com

Site 1

Gaia Power Technologies/Delaware
 County Electric Cooperative, Inc. – Edge
 of grid residential application that includes
 an 11 kW PowerTower battery-based
 energy storage and delivery system fed by
 a Plug Power 5 kW fuel cell in Delhi, NY

Timeline

- Gaia Power Tower and Plug Power Fuel Cell installed in June, 2005
- System operational in July 2005
- Fuel cell shut down in June, 2006, removed July, 2006
- System restarted in August, 2006 with grid supplying Power Tower
- Briggs 15 kW generator to be installed later in 2006
- Monitoring to continue until March 2007

DAS Block Diagram/First Year Configuration

First Year Operation

- Fuel cell supplied about 2kW to the Power Tower on a continuous basis
- Power Tower continuously supplied house load unless either leg went above 5.5kW or 45 amps
- If load went above, load shedding relaying operated, followed by full load transfer back to grid

First Year Summary

Month	System Mode
July, 2005	Fuel Cell ON (But new stack was installed during the last week
	of month)
August	Fuel Cell ON (Net metering but back to full mode on Aug 30 th)
September	Fuel Cell ON
October	Fuel Cell ON (Until Oct 26 th when outage occurred)
November	Fuel Cell ON (Primarily netmetering then set to OFF position
	followed by brief operation on Nov 22 nd)
December	Fuel Cell OFF
January, 2006	Fuel Cell OFF (Set back to ON position on Jan 15 th)
February	Fuel Cell ON (Net metering)
March	Fuel Cell ON (Net metering, Power Tower switched ON March
	23 rd)
April	Fuel Cell ON (Net metering)
May	Fuel Cell ON (May 20 th , switched to Bypass)
June	Fuel Cell OFF (June 5 th), Bypass
July	Fuel Cell Removed (July 27 th), Bypass
August	Bypass
September	Grid Feeding Power Tower, Power Tower Feeding Loads

Lessons Learned

- Edge of grid residential application successfully proven
- Battery energy storage system worked as designed
- However, several power quality issues emerged
 - Load shedding relay caused 2 cycle interruptions
 - Inverter operation of Power Tower caused severe voltage flicker that caused homeowner to put system into bypass on numerous occasions

Lessons Learned - cont

SS PQ Main Panel - Pst A from 7/5/2005 3:59:59 PM to 10/15/2006 1:00:00 AM

Current Configuration

Future Configuration

Tweedie Grid Meter 3-month Electrical Config 200 60 50 AC2 Input 120/240VAC AC1 Input Energy Storage 15 kW 120/240VAC 120/240VAC AC Output And Briggs Transfer Switch Control Load Control Generator Control Generator 120/240VAC Generator acts as a battery charger for whole-home energy storage unit. -Power flows between grid and home are zero Main Panel –Generator started by Power Tower Controller

Site 2

 Beacon Power – Grid frequency regulation demonstration at an industrial facility in Amsterdam, NY, using 7 flywheels producing 100 kW for 15 minutes

Timeline

- Service entrance monitored at PCT,
 Amsterdam, NY from Feb June, 2006
- Smart Energy Matrix (EM) flywheel system installed in June
- Approximately 1 month of system commissioning and testing
- Monitoring to continue for 18 months

DAS Block Diagram

Current Status

 Dranetz being used to verify extensive on board DAS supplied by Beacon Power

Current Status - Cont

September 7th verification correlation

Current Status - cont

 Real-time data available to public from Connected Energy link on project web page

Lessons Learned

 Beacon Power has successfully shown that the EM flywheel system can react to a frequency signal and inject or absorb power as needed assuming energy is available from storage system

Lessons Learned - cont

7/25/06 PCT

EM Frequency Time Measurement

Lessons Learned - Cont

Site 3

 New York Power Authority/ABB – Peakshaving and emergency backup application utilizing a 1 MW/7.2 MWh commercial-scale sodium-sulfur (NAS) battery system at a Long Island Bus facility

Timeline

- Signal points list finalized in July, 2006
- System to be commissioned in December, 2006

Signal	
Grid RMS Voltage	
Grid RMS Current	
Grid Real Power	
Grid Reactive Power	
Grid Apparent Power	
PCS Real Power	
PCS Reactive Power	
PCS Apparent Power	
Load Real Power	
Load Reactive Power	
Load Apparent Power	
PCS Real Energy Accumulated – Absorbed Real Energy	
PCS Reactive Energy Accumulated – Absorbed Reactive Energy (Inductive)	
PCS Real Energy Accumulated – Discharged Real Energy	
PCS Reactive Energy Accumulated – Discharged Reactive Energy (Capacative)	
System Charge / Discharge Cycle Counter	
System Operational Mode	

Future Work

Site 1

- Continue monitoring and verification of current configuration (grid connected, no backup source)
- Monitor and verification when Briggs 15 kW generator is installed through March 2007

• Site 2

Continue DAS verification and site reporting for 18 months total

Site 3

- Work with ABB on file transport mechanism to data center
- Work on data file conversion and web uploading
- Monitor and verification after installation in December, 2006